Step 1: First, calculate the powers of the matrix \( A \). Use matrix multiplication to compute \( A^2 \), \( A^3 \), and higher powers as necessary.
Step 2: Solve for the set \( S \) by substituting the appropriate powers of \( A \) into the given condition \( A m^2 + A^n = 31 - A^6 \), and identify the values of \( m \).
Step 3: Finally, compute \( n(S) \), which is the number of elements in the set \( S \). Thus, the final value of \( n(S) \) is found.
If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:

If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)