Let \( x = t^4 \), so that \( dx = 4t^3 dt \).
Substituting this into the given integral:
\[
f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx = \int \frac{4t^3}{t(1 + t)} \, dt
\]
Simplifying,
\[
f(x) = 4 \int \frac{t^2 - 1 + 1}{1 + t} \, dt
\]
Expanding further: \[ f(x) = 4 \int (t-1) \, dt + 4 \int \frac{1}{1 + t} \, dt \] Evaluating each part: \[ f(x) = 4 \left( \frac{(t-1)^2}{2} + \ln(1 + t) + C \right) \]
Step 3: Back SubstitutionSince \( t = x^{1/4} \), the final expression for \( f(x) \) is: \[ f(x) = 2 \left( x^{1/4} - 1 \right)^2 + 4 \ln(1 + x^{1/4}) + C \]
Step 4: Solving for \( C \)Given \( f(0) = -6 \), \[ f(0) = 2 \times (0^{1/4} - 1)^2 + 4 \ln(1 + 0^{1/4}) + C \] Evaluating, \[ f(0) = 2 \times 1 + 4 \times 0 + C = -6 \] Solving for \( C \): \[ C = -8 \]
Step 5: Compute \( f(1) \)Now, \[ f(1) = 2 \times (1^{1/4} - 1)^2 + 4 \ln(1 + 1^{1/4}) - 8 \] Simplifying, \[ f(1) = 4 \ln 2 - 8 = 4 (\ln 2 - 2) \]
Final Answer: \( 4(\ln 2 - 2) \)Let \( f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \). Then, \( \frac{df(x)}{dx} = \)
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to: