We are given that matrix \( A \) has three distinct eigenvalues, which means it has three linearly independent eigenvectors.
One known eigenvector is:
\[
v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}
\]
We are to determine which among the given options can be another eigenvector. Since eigenvectors corresponding to distinct eigenvalues are linearly independent, any other eigenvector must be linearly independent of \( v_1 \).
Check each option:
(1) \( \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \)
This is a scalar multiple of \( v_1 \) (specifically, \( -1 \cdot v_1 \)), so it is not linearly independent. Hence, not acceptable.
(2) \( \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \)
This vector is not a scalar multiple of \( v_1 \), but let’s test better options.
(3) \( \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \)
Compare with \( v_1 \). Subtract \( v_1 \) from this:
\[
\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
\]
Clearly not a scalar multiple. Still not confirmed as eigenvector without matrix multiplication.
(4) \( \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \)
Now test this by checking if \( A \cdot v = \lambda v \) for some scalar \( \lambda \).
Compute \( A \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \):
\[
A \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} =
\begin{pmatrix}
3(1) + (-1)(-2) + 1(1) \\
-1(1) + 5(-2) + (-1)(1) \\
1(1) + (-1)(-2) + 3(1)
\end{pmatrix} =
\begin{pmatrix}
6 \\
-12 \\
6
\end{pmatrix}
\]
This equals \( 6 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \), which confirms it is an eigenvector.
Hence, option (4) is a valid eigenvector corresponding to eigenvalue \( \lambda = 6 \).