Given the matrix \( A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \), we need to find the eigenvalues of the matrix \( 2A^2 - 4A + 5I \).
1. First, we calculate \( A^2 \):
\[
A^2 = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -4 \\ 12 & 7 \end{pmatrix}
\]
2. Now, calculate \( 2A^2 \):
\[
2A^2 = 2 \begin{pmatrix} 7 & -4 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 14 & -8 \\ 24 & 14 \end{pmatrix}
\]
3. Next, calculate \( 4A \):
\[
4A = 4 \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 8 & -4 \\ 12 & 8 \end{pmatrix}
\]
4. Now calculate \( 5I \) (where \( I \) is the identity matrix):
\[
5I = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}
\]
5. Compute \( 2A^2 - 4A + 5I \):
\[
2A^2 - 4A + 5I = \begin{pmatrix} 14 & -8 \\ 24 & 14 \end{pmatrix} - \begin{pmatrix} 8 & -4 \\ 12 & 8 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}
\]
\[
= \begin{pmatrix} 14 - 8 + 5 & -8 + 4 + 0 \\ 24 - 12 + 0 & 14 - 8 + 5 \end{pmatrix} = \begin{pmatrix} 11 & -4 \\ 12 & 11 \end{pmatrix}
\]
6. Find the eigenvalues of \( \begin{pmatrix} 11 & -4 \\ 12 & 11 \end{pmatrix} \):
\[
\text{det}\left( \begin{pmatrix} 11 - \lambda & -4 \\ 12 & 11 - \lambda \end{pmatrix} \right) = 0
\]
\[
(11 - \lambda)^2 + 48 = 0
\]
\[
(11 - \lambda)^2 = -48
\]
\[
11 - \lambda = \pm 4i
\Rightarrow \lambda = 11 \mp 4i
\]
Thus, the eigenvalues are: \( \boxed{11 \pm 4i} \)