Step 1: Analyze each set.
\( S_1 \) includes symmetric matrices, so elements above the diagonal determine the matrix. With 5 choices for each, and 6 such positions: \[ |S_1| = 5^6 \] \( S_2 \) includes skew-symmetric matrices, where non-diagonal elements are independent, and diagonal elements must be 0 (which are not in \( S \)), invalidating \( S_2 \). Thus: \[ |S_2| = 0 \] \( S_3 \) must balance the trace to be zero. Choosing two elements freely allows the third to be determined: \[ |S_3| = 5^2 \times (\text{number of valid third elements}) \]
Step 2: Calculate the union of sets.
Using the inclusion-exclusion principle, find \( n(S_1 \cup S_2 \cup S_3) \): \[ n(S_1 \cup S_2 \cup S_3) = |S_1| + |S_2| + |S_3| - (\text{intersections}) = 125 \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.