Step 1: Write augmented matrix
\[
\begin{bmatrix}[ccc|c]
1 & 2 & 1 & 6 \\
1 & 4 & 3 & 10 \\
2 & 4 & \lambda & \mu
\end{bmatrix}
\]
Step 2: Apply row operations to get row-echelon form
Subtract R₁ from R₂:
\[
R_2 \rightarrow R_2 - R_1 = [0, 2, 2, 4]
\]
Subtract \( 2 \times R_1 \) from R₃:
\[
R_3 \rightarrow R_3 - 2R_1 = [0, 0, \lambda - 2, \mu - 12]
\]
New matrix becomes:
\[
\begin{bmatrix}[ccc|c]
1 & 2 & 1 & 6 \\
0 & 2 & 2 & 4 \\
0 & 0 & \lambda - 2 & \mu - 12
\end{bmatrix}
\]
Step 3: Conditions for unique solution
For a unique solution:
- The coefficient matrix must be of full rank.
- No row of the form \( [0\ 0\ 0\ |\text{nonzero}] \)
So, we must ensure:
\[
\lambda - 2 \neq 0 \Rightarrow \lambda \neq 2
\]
If \( \lambda = 2 \), then:
\[
\lambda - 2 = 0 \Rightarrow \text{row 3 becomes } [0\ 0\ 0\ |\mu - 12]
\]
Now, if \( \mu \neq 12 \), it becomes inconsistent \( \Rightarrow \) no solution.
If \( \mu = 12 \), row becomes \( [0\ 0\ 0\ |0] \Rightarrow \) infinite solutions.
Hence, for unique solution:
\[
\boxed{\lambda \neq 2 \text{ and } \mu \neq 12}
\]