Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
The given inequality is:
\[ \lim_{x \to 0^+} \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
This simplifies to:
\[ (1 + 2 + \dots + p) - (1^2 + 2^2 + \dots + 9^2) \geq 1 \]
Which is the same as:
\[ \frac{p(p+1)}{2} - \frac{9 \cdot 10 \cdot 19}{6} \geq 1 \]
Simplifying further:
\[ \frac{p(p+1)}{2} \geq 572 \]
The least natural value of \( p \) is 24.
Thus, the least natural value of \( p \) is 24.