To determine the continuity of \( f(x) \) at \( x = 1 \), we need to check if the left-hand limit (LHL), the right-hand limit (RHL), and the function's value at \( x = 1 \) are all equal.
Step 1: Calculate the Left-Hand Limit (LHL)
\[ {LHL} = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2 - 1}{x^2 + 2x - 3} \] Factor the numerator and denominator: \[ \lim_{x \to 1^-} \frac{(x - 1)(x + 1)}{(x + 3)(x - 1)} \] Cancel the common factor \( (x - 1) \): \[ \lim_{x \to 1^-} \frac{x + 1}{x + 3} \] Substitute \( x = 1 \): \[ \frac{1 + 1}{1 + 3} = \frac{2}{4} = \frac{1}{2} \]
Step 2: Calculate the Right-Hand Limit (RHL)
\[ {RHL} = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{x^2 - 2x + 1} \] Factor the numerator and denominator: \[ \lim_{x \to 1^+} \frac{(x - 1)(x + 1)}{(x - 1)^2} \] Cancel the common factor \( (x - 1) \): \[ \lim_{x \to 1^+} \frac{x + 1}{x - 1} \] As \( x \) approaches 1 from the right (i.e., \( x>1 \)), the numerator approaches 2, and the denominator approaches 0 from the positive side. Thus, the limit is \( +\infty \). \[ \lim_{x \to 1^+} \frac{x + 1}{x - 1} = +\infty \]
Step 3: Evaluate the function at \( x = 1 \)
From the definition of \( f(x) \), we have \( f(1) = \frac{1}{2} \).
Step 4: Compare LHL, RHL, and \( f(1) \)
We have: \[ {LHL} = \frac{1}{2} \] \[ {RHL} = +\infty \] \[ f(1) = \frac{1}{2} \]
Conclusion:
Since LHL \( \ne \) RHL, the limit \( \lim_{x \to 1} f(x) \) does not exist. Therefore, the function \( f(x) \) is discontinuous at \( x = 1 \). Also, although LHL = \( f(1) \), the function is still discontinuous at \( x = 1 \) because the RHL is not equal to these values. For a function to be continuous at a point, the LHL, RHL, and the value of the function at that point must all be equal.