Step 1: {Analyze evenness or oddness}
\[ g(-u) = 2 \tan^{-1}(e^{-u}) - \frac{\pi}{2} \] \[ = 2 \left( \frac{\pi}{2} - \tan^{-1}(e^u) \right) - \frac{\pi}{2} \] \[ = \pi - 2 \tan^{-1}(e^u) - \frac{\pi}{2} = -2 \tan^{-1}(e^u) + \frac{\pi}{2} \] \[ = -(2 \tan^{-1}(e^u) - \frac{\pi}{2}) = -g(u) \] Thus, \( g \) is an odd function.
Step 2: {Verify increasing nature}
The derivative \( g'(u) = 2\frac{1}{1+e^{2u}}e^u>0 \) for all \( u \), indicating \( g \) is strictly increasing over \( (-\infty, \infty) \).
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
A particle is moving in a straight line. The variation of position $ x $ as a function of time $ t $ is given as:
$ x = t^3 - 6t^2 + 20t + 15 $.
The velocity of the body when its acceleration becomes zero is: