Question:

Let $A = \begin{bmatrix} 1 & a & a \\ 0 & 1 & b \\ 0 & 0 & 1\end{bmatrix}, a , b \in R$. 
If for some $n \in N , A ^{ n }=\begin{bmatrix}1 & 48 & 2160 \\ 0 & 1 & 96 \\ 0 & 0 & 1\end{bmatrix}$ 
then $n + a + b$ is equal to _________.

Updated On: Dec 16, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 24

Solution and Explanation

\(\begin{array}{l}A=\begin{bmatrix} 1& 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix} + \begin{bmatrix}0 & a & a \\0 & 0 & b \\0 & 0 & 0 \\\end{bmatrix} = I + B\end{array}\)
\(\begin{array}{l}B^2=\begin{bmatrix} 0& a & a \\0 & 0 & b \\0 & 0 & 0 \\\end{bmatrix}+\begin{bmatrix}0 & a & a \\0 & 0 & b \\0 & 0 & 0 \\\end{bmatrix}=\begin{bmatrix} 0& 0 & ab \\0 & 0 & 0 \\0 & 0 & 0 \\\end{bmatrix}\end{array}\)
\(B^3 = 0\)
An = (1 + B)n = nC0I + nC1 B + nC2 B2 + nC3 B3 + ….
\(\begin{array}{l}=\begin{bmatrix} 1& 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}+\begin{bmatrix}0 & na & na \\0 & 0 & nb \\0 & 0 & 0 \\\end{bmatrix}+\begin{bmatrix} 0& 0 & \frac{n(n-1)ab}{2} \\0 & 0 & 0 \\0 & 0 & 0 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}=\begin{bmatrix} 1& na & na+\frac{n(n-1)}{2}ab \\0 & 1 & nb \\0 & 0 & 1 \\\end{bmatrix}=\begin{bmatrix}1 & 48 & 2160 \\0 & 1 & 48 \\0 & 0 & 1 \\\end{bmatrix}\end{array}\)
On comparing we get na = 48, nb = 96 and
\(\begin{array}{l}na+\frac{n(n-1)}{2}ab=2160\end{array}\)
a = 4, n = 12 and b = 8
n + a + b = 24
Was this answer helpful?
144
63

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Matrix Transformation

The numbers or functions that are kept in a matrix are termed the elements or the entries of the matrix.

Transpose Matrix:

The matrix acquired by interchanging the rows and columns of the parent matrix is termed the Transpose matrix. The definition of a transpose matrix goes as follows - “A Matrix which is devised by turning all the rows of a given matrix into columns and vice-versa.”