Step 1: Given data:
\[ \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB} \]
Step 2: Let the position vectors of \( \overrightarrow{A} \) are \( \overrightarrow{A} \), then:
\[ \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} \] i.e., position vector of \( \overrightarrow{B} = 2i - j + k \)
Step 3: Now for \( \overrightarrow{C} \), position vector is:
\[ \overrightarrow{CA} = \overrightarrow{C} - \overrightarrow{A} \] i.e., position vector of \( \overrightarrow{C} = -i - 3j - 5k \)
Step 4: Now for centroid, the position vector \( \overrightarrow{G} \) is:
\[ \overrightarrow{G} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}}{3} \] Substitute the values of \( \overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C} \): \[ \overrightarrow{G} = \frac{1}{3} (2i + 2j + 6k) \]
Step 5: Now calculate the distance from \( \overrightarrow{G} \) to \( \overrightarrow{A} \):
\[ \overrightarrow{AG} = \frac{1}{3} (i + 2j + 6k) \]
Step 6: Now calculate \( |AG|^2 \):
\[ |AG|^2 = \frac{1}{9} \times 41 \]
Step 7: Distance between \( B \) and \( G \) is:
\[ |BG|^2 = \frac{59}{9} \]
Step 8: Distance between \( C \) and \( G \) is:
\[ |CG|^2 = \frac{146}{9} \]
Step 9: Final calculation of the sum of squares of the distances:
\[ 6 \left[ |AG|^2 + |BG|^2 + |CG|^2 \right] = 6 \times \left( \frac{41}{9} + \frac{59}{9} + \frac{146}{9} \right) \]
Step 10: Final result:
\[ 6 \times \frac{246}{9} = 164 \]
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 