Step 1: Given data:
\[ \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB} \]
Step 2: Let the position vectors of \( \overrightarrow{A} \) are \( \overrightarrow{A} \), then:
\[ \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} \] i.e., position vector of \( \overrightarrow{B} = 2i - j + k \)
Step 3: Now for \( \overrightarrow{C} \), position vector is:
\[ \overrightarrow{CA} = \overrightarrow{C} - \overrightarrow{A} \] i.e., position vector of \( \overrightarrow{C} = -i - 3j - 5k \)
Step 4: Now for centroid, the position vector \( \overrightarrow{G} \) is:
\[ \overrightarrow{G} = \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}}{3} \] Substitute the values of \( \overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C} \): \[ \overrightarrow{G} = \frac{1}{3} (2i + 2j + 6k) \]
Step 5: Now calculate the distance from \( \overrightarrow{G} \) to \( \overrightarrow{A} \):
\[ \overrightarrow{AG} = \frac{1}{3} (i + 2j + 6k) \]
Step 6: Now calculate \( |AG|^2 \):
\[ |AG|^2 = \frac{1}{9} \times 41 \]
Step 7: Distance between \( B \) and \( G \) is:
\[ |BG|^2 = \frac{59}{9} \]
Step 8: Distance between \( C \) and \( G \) is:
\[ |CG|^2 = \frac{146}{9} \]
Step 9: Final calculation of the sum of squares of the distances:
\[ 6 \left[ |AG|^2 + |BG|^2 + |CG|^2 \right] = 6 \times \left( \frac{41}{9} + \frac{59}{9} + \frac{146}{9} \right) \]
Step 10: Final result:
\[ 6 \times \frac{246}{9} = 164 \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).