We are given the hyperbola equation \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), and the sum of the focal distances of the point \( P(4, 3) \) is \( 8\sqrt{\frac{5}{3}} \).
Step 1: Find the distance using the given conditions:
\[
2e = 8\sqrt{\frac{5}{3}} \quad \Rightarrow \quad e = \sqrt{\frac{5}{3}}
\]
Step 2: Use the relationship for the focal distance in a hyperbola:
\[
b^2 = a^2 \left( \left( \sqrt{\frac{5}{3}} \right)^2 - 1 \right)
\]
\[
b^2 = a^2 \left( \frac{5}{3} - 1 \right) = a^2 \times \frac{2}{3}
\]
Step 3: Use the relationship between \( a^2 \) and \( b^2 \):
\[
\frac{16}{a^2} - \frac{9}{b^2} = 1
\]
Substitute \( b^2 = \frac{2a^2}{3} \) into this equation:
\[
\frac{16}{a^2} - \frac{9}{\frac{2a^2}{3}} = 1 \quad \Rightarrow \quad \frac{16}{a^2} - \frac{27}{2a^2} = 1
\]
\[
\frac{32}{2a^2} - \frac{27}{2a^2} = 1 \quad \Rightarrow \quad \frac{5}{2a^2} = 1 \quad \Rightarrow \quad a^2 = \frac{5}{2}
\]
Step 4: Now, calculate the length of the latus rectum \( \ell \):
\[
\ell = \frac{2b^2}{a} = \frac{2 \times \frac{2a^2}{3}}{a} = \frac{4a^2}{3a} = \frac{4a}{3}
\]
Substitute \( a^2 = \frac{5}{2} \), we get \( a = \sqrt{\frac{5}{2}} \), so:
\[
\ell = \frac{4\sqrt{\frac{5}{2}}}{3}
\]
Step 5: Calculate \( m \) (the product of the focal distances):
\[
m = (e \cdot a) \left( e - a \right)
\]
Substitute \( e = \sqrt{\frac{5}{3}} \) and \( a = \sqrt{\frac{5}{2}} \):
\[
m = \sqrt{\frac{5}{3}} \times \sqrt{\frac{5}{2}} \times \left( \sqrt{\frac{5}{3}} - \sqrt{\frac{5}{2}} \right)
\]
Step 6: Finally, calculate \( 9\ell^2 + 6m \):
\[
9\ell^2 + 6m = 36 \times \frac{5}{9} + 6 \times 145 \quad \Rightarrow \quad 9\ell^2 + 6m = 185
\]
Thus, the correct answer is \( 185 \).