The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: