Step 1: Given points of contact:
\[ A \left( \frac{-16}{5}, \frac{9}{5} \right), \quad B \left( \frac{16}{5}, \frac{-9}{5} \right) \] and the point \( D \) is: \[ D \left( \frac{12}{5}, \frac{12}{5} \right). \]
Step 2: Area Calculation of Triangle \( ABD \):
The area of triangle \( ABD \) is given by: \[ \text{Area of } ABD = \frac{1}{2} \left| \begin{array}{ccc} \frac{-16}{5} & \frac{9}{5} & 1 \\ \frac{16}{5} & \frac{-9}{5} & 1 \\ \frac{12}{5} & \frac{12}{5} & 1 \\ \end{array} \right| = 12. \]
Step 3: Area of Quadrilateral \( ABCD \):
The area of quadrilateral \( ABCD \) is: \[ \text{Area of } ABCD = 24. \]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to