The function \(g(t)\) can be written using the Heaviside unit step function \(u(t-a)\):
$$ g(t) = \cos\left(t - \frac{\pi}{3}\right) u\left(t - \frac{\pi}{3}\right) $$
This is of the form \( f(t-a) u(t-a) \), where \( f(t) = \cos(t) \) and \( a = \pi/3 \).
We use the Second Shifting Theorem (Time Delay Theorem) of Laplace transforms:
$$ \mathcal{L}\{ f(t-a) u(t-a) \} = e^{-as} F(s) $$
where \( F(s) = \mathcal{L}\{ f(t) \} \).
First, find the Laplace transform of \( f(t) = \cos(t) \). The standard transform is:
$$ F(s) = \mathcal{L}\{\cos(t)\} = \frac{s}{s^2 + 1^2} = \frac{s}{s^2 + 1} $$
Now apply the Second Shifting Theorem with \( a = \pi/3 \):
$$ G(s) = \mathcal{L}\{ g(t) \} = e^{-(\pi/3)s} F(s) = e^{-s\pi/3} \frac{s}{s^2 + 1} $$
$$ G(s) = \frac{s e^{-s\pi/3}}{s^2+1} $$
This matches option (1).