Using \(|\vec{a} + \vec{b}|^2 = \sqrt{2}|\vec{a} - \vec{b}|^2\):
\[ a^2 + b^2 + 2a \cdot b = 2(a^2 + b^2 - 2a \cdot b) \]
Simplify:
\[ a^2 + b^2 + 2a \cdot b = 2a^2 + 2b^2 - 4a \cdot b \] \[ 6(a \cdot b) = a^2 + b^2 \hspace{20pt}(2)\]
Substitute \(\vec{a} \cdot \vec{b} = ab \cdot \frac{5}{9}\) from (1):
\[ 6 \left( \frac{5}{9} ab \right) = a^2 + b^2 \]
Assume \(a = nb\): \[ \frac{10}{3} ab = a^2 + b^2 \]
\[ \frac{10}{3} nb^2 = n^2b^2 + b^2 \]
Divide through by \(b^2\): \[ \frac{10}{3}n = n^2 + 1 \]
Rearrange: \[ 3n^2 - 10n + 3 = 0 \]
Solve using the quadratic formula:
\[ n = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)} \]
\[ n = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ n = \frac{10 \pm 8}{6} \]
\[ n = \frac{18}{6} = 3 \] (only positive integer value).
Final Answer: \(n = 3\).
A vector has magnitude same as that of A = \(-3\hat{i} + 4\hat{j}\) and is parallel to B = \(4\hat{i} + 3\hat{j}\). The x and y components of this vector in the first quadrant are x and y respectively where:
\(x = \_\_\_\_\).
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: