Using \(|\vec{a} + \vec{b}|^2 = \sqrt{2}|\vec{a} - \vec{b}|^2\):
\[ a^2 + b^2 + 2a \cdot b = 2(a^2 + b^2 - 2a \cdot b) \]
Simplify:
\[ a^2 + b^2 + 2a \cdot b = 2a^2 + 2b^2 - 4a \cdot b \] \[ 6(a \cdot b) = a^2 + b^2 \hspace{20pt}(2)\]
Substitute \(\vec{a} \cdot \vec{b} = ab \cdot \frac{5}{9}\) from (1):
\[ 6 \left( \frac{5}{9} ab \right) = a^2 + b^2 \]
Assume \(a = nb\): \[ \frac{10}{3} ab = a^2 + b^2 \]
\[ \frac{10}{3} nb^2 = n^2b^2 + b^2 \]
Divide through by \(b^2\): \[ \frac{10}{3}n = n^2 + 1 \]
Rearrange: \[ 3n^2 - 10n + 3 = 0 \]
Solve using the quadratic formula:
\[ n = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)} \]
\[ n = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ n = \frac{10 \pm 8}{6} \]
\[ n = \frac{18}{6} = 3 \] (only positive integer value).
Final Answer: \(n = 3\).
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
Match List-I with List-II: List-I