If $\vec{a}$ and $\vec{b}$ make an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then \[ |\vec{a} + \vec{b}| = \sqrt{2} |\vec{a} - \vec{b}| \quad \text{for } |\vec{a}| = n |\vec{b}|. \] The integer value of $n$ is _____.
To solve for the integer value of \( n \), we begin by using the known relation between vectors and their magnitudes:
The magnitudes of the vector sums can be expressed as: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta \] \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta \] where \(\theta = \cos^{-1}\left(\frac{5}{9}\right)\).
Substituting \( \cos\theta = \frac{5}{9} \), these become:
\[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + \frac{10}{9}|\vec{a}||\vec{b}| \] \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - \frac{10}{9}|\vec{a}||\vec{b}| \]
Given: \[ |\vec{a} + \vec{b}| = \sqrt{2} |\vec{a} - \vec{b}| \]
Squaring both sides: \[ |\vec{a} + \vec{b}|^2 = 2 |\vec{a} - \vec{b}|^2 \]
Substitute the expanded forms: \[ |\vec{a}|^2 + |\vec{b}|^2 + \frac{10}{9}|\vec{a}||\vec{b}| = 2\left(|\vec{a}|^2 + |\vec{b}|^2 - \frac{10}{9}|\vec{a}||\vec{b}|\right) \]
Simplifying: \[ |\vec{a}|^2 + |\vec{b}|^2 + \frac{10}{9}|\vec{a}||\vec{b}| = 2|\vec{a}|^2 + 2|\vec{b}|^2 - \frac{20}{9}|\vec{a}||\vec{b}| \]
Combine terms: \[ -|\vec{a}|^2 - |\vec{b}|^2 + \frac{30}{9}|\vec{a}||\vec{b}| = 0 \]
Factor out common terms: \[ 3(|\vec{a}||\vec{b}|) = |\vec{a}|^2 + |\vec{b}|^2 \]
Express in terms of \( n = \frac{|\vec{a}|}{|\vec{b}|} \). Thus \( |\vec{a}| = n|\vec{b}| \) and \( |\vec{a}|^2 = n^2|\vec{b}|^2 \), substitute in equation: \[ 3n|\vec{b}|^2 = n^2|\vec{b}|^2 + |\vec{b}|^2 \]
Dividing through by \( |\vec{b}|^2 \) (assuming non-zero): \[ 3n = n^2 + 1 \]
Rearrange: \[ n^2 - 3n + 1 = 0 \]
Solve quadratic equation using the formula: \[ n = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
Here, \(a = 1\), \(b = -3\), \(c = 1\): \[ n = \frac{3 \pm \sqrt{9-4}}{2} = \frac{3 \pm \sqrt{5}}{2} \]
Rounding to the nearest integer within the range, \(n\), falls as either 2 or 3, since 3 is explicitly within the specified range 3,3, \( \boxed{3} \) is the answer.
Using \(|\vec{a} + \vec{b}|^2 = \sqrt{2}|\vec{a} - \vec{b}|^2\):
\[ a^2 + b^2 + 2a \cdot b = 2(a^2 + b^2 - 2a \cdot b) \]
Simplify:
\[ a^2 + b^2 + 2a \cdot b = 2a^2 + 2b^2 - 4a \cdot b \] \[ 6(a \cdot b) = a^2 + b^2 \hspace{20pt}(2)\]
Substitute \(\vec{a} \cdot \vec{b} = ab \cdot \frac{5}{9}\) from (1):
\[ 6 \left( \frac{5}{9} ab \right) = a^2 + b^2 \]
Assume \(a = nb\): \[ \frac{10}{3} ab = a^2 + b^2 \]
\[ \frac{10}{3} nb^2 = n^2b^2 + b^2 \]
Divide through by \(b^2\): \[ \frac{10}{3}n = n^2 + 1 \]
Rearrange: \[ 3n^2 - 10n + 3 = 0 \]
Solve using the quadratic formula:
\[ n = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)} \]
\[ n = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ n = \frac{10 \pm 8}{6} \]
\[ n = \frac{18}{6} = 3 \] (only positive integer value).
Final Answer: \(n = 3\).
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
