The volume \( V \) of a tetrahedron formed by four vertices \( A(x_1, y_1, z_1), B(x_2, y_2, z_2), C(x_3, y_3, z_3), D(x_4, y_4, z_4) \) is given by the formula:
\[
V = \frac{1}{6} \left| \text{det} \begin{bmatrix}
x_1 & y_1 & z_1 & 1
x_2 & y_2 & z_2 & 1
x_3 & y_3 & z_3 & 1
x_4 & y_4 & z_4 & 1
\end{bmatrix} \right|
\]
Substituting the coordinates of the points \( A(1, 2, 3), B(-3, -1, 1), C(2, 1, 3), D(-1, 2, x) \) into the above matrix:
\[
V = \frac{1}{6} \left| \text{det} \begin{bmatrix}
1 & 2 & 3 & 1
-3 & -1 & 1 & 1
2 & 1 & 3 & 1
-1 & 2 & x & 1
\end{bmatrix} \right| = \frac{11}{6}
\]
Now, calculate the determinant of the matrix and solve for \( x \). Upon solving, we find that \( x = 3 \).