To find the image of the point \((4, 4, 3)\) in the given line \(\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{3}\), we follow these steps:
Step 1: Parametric form of the line
The line's equation can be rewritten in parametric form as:
Step 2: Finding the projection of the point onto the line
First, find the direction vector of the line \(\vec{d} = \langle 2, 1, 3 \rangle\) and the vector \(\vec{OP} = \langle 4 - 1, 4 - 2, 3 - 1 \rangle = \langle 3, 2, 2 \rangle\).
The projection of \(\vec{OP}\) onto \(\vec{d}\) is:
\(\text{Projection} = \frac{\vec{OP} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\vec{d}\), where \(\vec{OP} \cdot \vec{d} = 3 \cdot 2 + 2 \cdot 1 + 2 \cdot 3 = 14\) and \(\vec{d} \cdot \vec{d} = 2^2 + 1^2 + 3^2 = 14\).
The projection is:
\(\text{Projection} = \frac{14}{14}\langle 2, 1, 3 \rangle = \langle 2, 1, 3 \rangle\).
Step 3: Finding the point on the line closest to the point \((4, 4, 3)\)
The closest point \((a, \beta, \gamma)\) on the line is: \((1, 2, 1) + \langle 2, 1, 3 \rangle = \langle 3, 3, 4 \rangle\).
Step 4: Calculating the image of the point
The image point \((x', y', z')\) is equidistant from the line as point \((4, 4, 3)\), reflected over the line. Using the midpoint formula:
Thus, the image is \((2, 2, 5)\).
Final Calculation:
The sum \(a + \beta + \gamma = 2 + 2 + 5 = 9\).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is