Step 1: Understand the Parametric Equations
The points are given by:
\[ x = 3 \tan\left( \theta + \frac{\pi}{3} \right) \]
\[ y = 2 \tan\left( \theta + \frac{\pi}{6} \right) \]
Step 2: Use Trigonometric Identities
Let:
\[ A = \theta + \frac{\pi}{3} \]
\[ B = \theta + \frac{\pi}{6} \]
Thus, \( A - B = \frac{\pi}{6} \). Using the tangent of a difference formula:
\[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \]
Given \( \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \), we have:
\[ \frac{1}{\sqrt{3}} = \frac{\frac{x}{3} - \frac{y}{2}}{1 + \frac{x}{3} \cdot \frac{y}{2}} \]
Step 3: Simplify the Equation
Simplify numerator and denominator:
\[ \frac{1}{\sqrt{3}} = \frac{\frac{2x - 3y}{6}}{\frac{6 + xy}{6}} = \frac{2x - 3y}{6 + xy} \]
Multiply both sides by \(6 + xy\):
\[ \frac{6 + xy}{\sqrt{3}} = 2x - 3y \]
Multiply by \( \sqrt{3} \):
\[ 6 + xy = 2\sqrt{3}x - 3\sqrt{3}y \]
Rearrange terms:
\[ xy - 2\sqrt{3}x + 3\sqrt{3}y + 6 = 0 \]
Step 4: Compare with Given Curve
The given curve is:
\[ xy + \alpha x + \beta y + \gamma = 0 \]
Comparing coefficients:
\[ \begin{align} \alpha &= -2\sqrt{3} \\ \beta &= 3\sqrt{3} \\ \gamma &= 6 \end{align}
Step 5: Calculate \( \alpha^2 + \beta^2 + \gamma^2 \)
Compute each squared term:
\[ \begin{align} \alpha^2 &= (-2\sqrt{3})^2 = 12 \\ \beta^2 &= (3\sqrt{3})^2 = 27 \\ \gamma^2 &= 6^2 = 36 \end{align} \]
Sum them up:
\[ \alpha^2 + \beta^2 + \gamma^2 = 12 + 27 + 36 = 75 \]
Step 6: Match with Options
The correct answer corresponds to option (4).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: