The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
We are given the equation: \[ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) \]
Step 1: Simplify the given equation.
First, rewrite the equation in a simpler form to recognize patterns.
We can try substituting a simpler variable for trigonometric terms to make the equation easier to solve.
Let \( x = \cos \left( \frac{\theta}{2} \right) \), \( y = \cos \left( \frac{5\theta}{2} \right) \).
Thus, the equation becomes: \[ 2x^2 y + y = 2y^3 \]
Simplify this to: \[ y(2x^2 + 1) = 2y^3 \] \[ y(2x^2 + 1 - 2y^2) = 0 \]
Step 2: Solve for the possible solutions.
From the above factorization, we now solve for the possible values of \( y \).
We can split the equation into two cases: 1. \( y = 0 \) 2. \( 2x^2 + 1 - 2y^2 = 0 \) In case 1, we check the values of \( y = 0 \) within the given interval and determine the corresponding values of \( \theta \). In case 2, we substitute the expression for \( y \) into the second equation and solve for \( \theta \).
Step 3: Count the number of solutions.
We find that there are 7 distinct solutions in the given interval \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).