Question:

If $\int \frac{dx}{x^{3}\left(1+x^{6}\right)^{\frac{2}{3}}}=f \left(x\right)\left(1+x ^{6}\right)^{\frac{1}{3}}+C$, where C is a constant of integration, then the function $f \left(x\right)$ is equal to-

Updated On: Sep 30, 2024
  • $- \frac{1}{6x^{3}}$
  • $ \frac{3}{x^{2}}$
  • $- \frac{1}{2x^{2}}$
  • $- \frac{1}{2x^{3}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$\int \frac{dx}{x^{3}\left(1+x^{6}\right)^{\frac{2}{3}}}= x f \left(x\right)\left(1+x^{6}\right)^{\frac{1}{3}} +c$
$\int \frac{dx}{x^{7}\left(\frac{1}{x^{6}}+1\right)^{\frac{2}{3}}}= x f \left(x\right)\left(1+x^{6}\right)^{\frac{1}{3}} +c$
Let $t=\frac{1}{x^{6}}+1$
$dt=\frac{-6}{x^{7}}dx$
$=- \frac{1}{6}\int \frac{dt}{t^{\frac{2}{3}}}=- \frac{1}{2} t^{\frac{1}{3}}$
$=- \frac{1}{2} \left(\frac{1}{x^{6}}+1\right)^{\frac{1}{3}} =- \frac{1}{2} \frac{\left(1+x^{6}\right)^{\frac{1}{3}}}{x^{2}}$
$\therefore f \left(x\right)=- \frac{1}{2x^{3}}$
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.