\( \int \sin^5 x \, dx \), we break it into:
\[
\int \sin^5 x \, dx = \int \sin^3 x \cdot \sin^2 x \, dx = \int \sin^3 x \cdot (1 - \cos^2 x) \, dx
\]
Now, use \( \sin^3 x = \sin x (1 - \cos^2 x) \):
\[
= \int \sin x (1 - \cos^2 x)^2 (1 - \cos^2 x) \, dx = \int \sin x (1 - 2 \cos^2 x + \cos^4 x) \, dx
\]
Now let \( u = \cos x \), \( du = -\sin x \, dx \), so the integral becomes:
\[
= -\int (1 - 2u^2 + u^4) \, du = -\left( u - \frac{2u^3}{3} + \frac{u^5}{5} \right) + C
\]
\[
= -\cos x + \frac{2}{3} \cos^3 x - \frac{1}{5} \cos^5 x + C
\]