The integral can be solved as follows:
\[
\int \sqrt{\sec 2x - 1} \, dx = \int \sqrt{1 - \cos 2x} \, dx
\]
This is equivalent to:
\[
= \sqrt{2} \int \frac{\sin x}{\sqrt{2\cos^2 x - 1}} \, dx
\]
Let \( \cos x = t \), so \( -\sin x \, dx = dt \). The integral becomes:
\[
= -\int \sqrt{2} \frac{dt}{\sqrt{2t^2 - 1}}
\]
This simplifies to:
\[
= -\ln \left( \sqrt{2} \cos x + \sqrt{\cos 2x} \right) + c
\]
Therefore, we have:
\[
= -\frac{1}{2} \ln \left( 2 \cos^2 x + \cos 2x + 2 \sqrt{2} \cos x \right) + c
\]
This leads to:
\[
\beta = \frac{1}{2}, \quad \alpha = -\frac{1}{2} \quad \Rightarrow \quad \beta - \alpha = 1
\]