
Step 1: Analyze the circuit structure. - The given circuit consists of two NOT gates applied to \( A \) and \( B \), followed by two AND gates whose outputs feed into gate \( G \). - The final truth table indicates that \( Y \) is high for \( (A, B) = (0,0) \) and \( (1,1) \), but low otherwise.
Step 2: Identify the logical expression. Observing the output pattern, we recognize it corresponds to the NOR operation: \[ Y = \overline{A + B}. \]
Step 3: Select the appropriate gate. - The only logic gate that produces \( Y = \overline{A + B} \) is the NOR Gate.
- Thus, the correct choice for gate \( G \) is a NOR gate. Thus, the answer is \( \boxed{\text{NOR Gate}} \).



Which of the following circuits has the same output as that of the given circuit?

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.