Raoult's Law states that the partial vapor pressure of each volatile component in a solution is equal to the vapor pressure of the pure component multiplied by its mole fraction in the solution. Mathematically, it is represented as:
\[
P_i = X_i P_i^{\circ}
\]
Where:
- \( P_i \) is the partial vapor pressure of component \( i \),
- \( X_i \) is the mole fraction of component \( i \) in the solution,
- \( P_i^{\circ} \) is the vapor pressure of the pure component \( i \).
Given:
- Vapor pressure of chloroform \( P_{\text{chloroform}}^{\circ} = 200 \, \text{mm Hg} \),
- Vapor pressure of dichloromethane \( P_{\text{dichloromethane}}^{\circ} = 4.5 \, \text{mm Hg} \),
- Mass of chloroform \( m_{\text{chloroform}} = 51 \, \text{g} \),
- Mass of dichloromethane \( m_{\text{dichloromethane}} = 20 \, \text{g} \),
- Molar mass of chloroform \( M_{\text{chloroform}} = 119.38 \, \text{g/mol} \),
- Molar mass of dichloromethane \( M_{\text{dichloromethane}} = 84.93 \, \text{g/mol} \).
Step 1: Calculate moles of each component.
For chloroform:
\[
n_{\text{chloroform}} = \frac{51 \, \text{g}}{119.38 \, \text{g/mol}} = 0.427 \, \text{mol}
\]
For dichloromethane:
\[
n_{\text{dichloromethane}} = \frac{20 \, \text{g}}{84.93 \, \text{g/mol}} = 0.235 \, \text{mol}
\]
Step 2: Calculate total moles in the solution.
Total moles = \( n_{\text{chloroform}} + n_{\text{dichloromethane}} = 0.427 + 0.235 = 0.662 \, \text{mol} \).
Step 3: Calculate mole fractions.
Mole fraction of chloroform:
\[
X_{\text{chloroform}} = \frac{n_{\text{chloroform}}}{n_{\text{chloroform}} + n_{\text{dichloromethane}}} = \frac{0.427}{0.662} = 0.645
\]
Mole fraction of dichloromethane:
\[
X_{\text{dichloromethane}} = \frac{n_{\text{dichloromethane}}}{n_{\text{chloroform}} + n_{\text{dichloromethane}}} = \frac{0.235}{0.662} = 0.355
\]
Step 4: Apply Raoult's Law to calculate the total vapor pressure.
Vapor pressure of the solution is the sum of the partial pressures:
\[
P_{\text{total}} = X_{\text{chloroform}} P_{\text{chloroform}}^{\circ} + X_{\text{dichloromethane}} P_{\text{dichloromethane}}^{\circ}
\]
\[
P_{\text{total}} = (0.645 \times 200) + (0.355 \times 4.5)
\]
\[
P_{\text{total}} = 129 + 1.598 = 130.598 \, \text{mm Hg}
\]
Thus, the vapor pressure of the solution is \( 130.6 \, \text{mm Hg} \).