Given: $ \Delta H_f^0 [C(graphite)] = 710 $ kJ mol⁻¹ $ \Delta_c H^0 = 414 $ kJ mol⁻¹ $ \Delta_{H-H}^0 = 436 $ kJ mol⁻¹ $ \Delta_{C-H}^0 = 611 $ kJ mol⁻¹
The \(\Delta H_{C=C}^0 \text{ for }CH_2=CH_2 \text{ is }\) _____\(\text{ kJ mol}^{-1} \text{ (nearest integer value)}\)
$[\Delta H_f^0]_{C_2H_4(g)} = (2 \times 710) + (2 \times 436) - 611 - 4 \times 414$
$[\Delta H_f^0]_{C_2H_4(g)} = 1420 + 872 - 611 - 1656$
$[\Delta H_f^0]_{C_2H_4(g)} = 2292 - 2267 = 25 \text{ kJ mol}^{-1}$
Final Answer: The final answer is $25$
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: