First, compute the determinant of the matrix as \( x \to 0 \) and then take the limit to find the value of \( \lambda + \mu + \nu \).
The limit and determinant calculation gives the value 3 for \( \lambda + \mu + \nu \), so squaring this gives 9.
Final Answer: \( (\lambda + \mu + \nu)^2 = 9 \).
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Consider the lines $ x(3\lambda + 1) + y(7\lambda + 2) = 17\lambda + 5 $. If P is the point through which all these lines pass and the distance of L from the point $ Q(3, 6) $ is \( d \), then the distance of L from the point \( (3, 6) \) is \( d \), then the value of \( d^2 \) is
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]