The correct answer is : 3.
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
A particle of mass \(m\) falls from rest through a resistive medium having resistive force \(F=-kv\), where \(v\) is the velocity of the particle and \(k\) is a constant. Which of the following graphs represents velocity \(v\) versus time \(t\)? 
Read More: Area under the curve formula