An engine operating between the boiling and freezing points of water will have
A. efficiency more than 27%
B. efficiency less than the efficiency a Carnot engine operating between the same two temperatures.
C. efficiency equal to 27%
D. efficiency less than 27%
Solution:
The efficiency \( \eta \) of a Carnot engine is given by the formula:
\[
\eta = \left( 1 - \frac{T_2}{T_1} \right) \times 100
\]
where \( T_1 \) and \( T_2 \) are the temperatures of the hot and cold reservoirs in Kelvin.
For an engine operating between the freezing point (0°C) and the boiling point (100°C) of water:
\[
T_1 = 100 + 273 = 373 \, \text{K}, \quad T_2 = 0 + 273 = 273 \, \text{K}.
\]
Substituting these values into the formula:
\[
\eta = \left( 1 - \frac{273}{373} \right) \times 100 = 26.8\%.
\]
Thus, the efficiency of the engine is less than 27%, and the efficiency of the given engine will be less than the efficiency of a Carnot engine.
Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |

| List-I | List-II | ||
| P | The value of \(I1\) in Ampere is | I | \(0\) |
| Q | The value of I2 in Ampere is | II | \(2\) |
| R | The value of \(\omega_0\) in kilo-radians/s is | III | \(4\) |
| S | The value of \(V_0\) in Volt is | IV | \(20\) |
| 200 | |||
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to