An engine operating between the boiling and freezing points of water will have
A. efficiency more than 27%
B. efficiency less than the efficiency a Carnot engine operating between the same two temperatures.
C. efficiency equal to 27%
D. efficiency less than 27%
Solution:
The efficiency \( \eta \) of a Carnot engine is given by the formula:
\[
\eta = \left( 1 - \frac{T_2}{T_1} \right) \times 100
\]
where \( T_1 \) and \( T_2 \) are the temperatures of the hot and cold reservoirs in Kelvin.
For an engine operating between the freezing point (0°C) and the boiling point (100°C) of water:
\[
T_1 = 100 + 273 = 373 \, \text{K}, \quad T_2 = 0 + 273 = 273 \, \text{K}.
\]
Substituting these values into the formula:
\[
\eta = \left( 1 - \frac{273}{373} \right) \times 100 = 26.8\%.
\]
Thus, the efficiency of the engine is less than 27%, and the efficiency of the given engine will be less than the efficiency of a Carnot engine.
Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 