An engine operating between the boiling and freezing points of water will have
A. efficiency more than 27%
B. efficiency less than the efficiency a Carnot engine operating between the same two temperatures.
C. efficiency equal to 27%
D. efficiency less than 27%
Solution:
The efficiency \( \eta \) of a Carnot engine is given by the formula:
\[
\eta = \left( 1 - \frac{T_2}{T_1} \right) \times 100
\]
where \( T_1 \) and \( T_2 \) are the temperatures of the hot and cold reservoirs in Kelvin.
For an engine operating between the freezing point (0°C) and the boiling point (100°C) of water:
\[
T_1 = 100 + 273 = 373 \, \text{K}, \quad T_2 = 0 + 273 = 273 \, \text{K}.
\]
Substituting these values into the formula:
\[
\eta = \left( 1 - \frac{273}{373} \right) \times 100 = 26.8\%.
\]
Thus, the efficiency of the engine is less than 27%, and the efficiency of the given engine will be less than the efficiency of a Carnot engine.
Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
