The net energy absorbed by the atom is given by:
\[
E = E_i - E_e = h c \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right),
\]
where:
\( h = 6.6 \times 10^{-34} \, \text{Js} \),
\( c = 3 \times 10^8 \, \text{m/s} \),
\( \lambda_1 = 500 \, \text{nm} = 5 \times 10^{-7} \, \text{m} \),
\( \lambda_2 = 600 \, \text{nm} = 6 \times 10^{-7} \, \text{m} \).
Substitute the values:
\[
E = \left(6.6 \times 10^{-34}\right) \cdot \left(3 \times 10^8\right) \cdot \left(\frac{1}{5 \times 10^{-7}} - \frac{1}{6 \times 10^{-7}}\right).
\]
Simplify:
\[
E = \left(6.6 \times 10^{-34} \cdot 3 \times 10^8\right) \cdot \left(\frac{6 - 5}{30 \times 10^{-7}}\right).
\]
\[
E = \left(1.98 \times 10^{-25}\right) \cdot \left(\frac{1}{5 \times 10^{-7}}\right).
\]
Convert to eV (\( 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \)):
\[
E = \frac{1.98 \times 10^{-25}}{1.6 \times 10^{-19}} = 4.125 \times 10^{-4} \, \text{eV}.
\]
Thus, the net energy absorbed is \( \boxed{4.125 \times 10^{-4} \, \text{eV}} \) and the value of \( n \) is \( \boxed{4125} \).