Step 1: Recall the formula for the Paschen series.
The wavelength \( \lambda \) of a spectral line in the Paschen series is given by:
\[
\frac{1}{\lambda} = R \left( \frac{1}{3^2} - \frac{1}{n^2} \right), \quad n = 4, 5, 6, \dots
\]
where:
\begin{itemize}
\( R \) is the Rydberg constant (\( 1.097 \times 10^7 \, \text{m}^{-1} \)),
\( n \) is the principal quantum number (\( n > 3 \)).
\end{itemize}
Step 2: Calculate the wavelength for the first member (\( n = 4 \)).
For \( n = 4 \):
\[
\frac{1}{\lambda_1} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right).
\]
Simplify:
\[
\frac{1}{\lambda_1} = R \left( \frac{1}{9} - \frac{1}{16} \right).
\]
Find the common denominator:
\[
\frac{1}{\lambda_1} = R \cdot \frac{16 - 9}{144} = R \cdot \frac{7}{144}.
\]
Given \( R = 1.097 \times 10^7 \, \text{m}^{-1} \), calculate:
\[
\frac{1}{\lambda_1} = 1.097 \times 10^7 \cdot \frac{7}{144}.
\]
Simplify:
\[
\frac{1}{\lambda_1} \approx 5.33 \times 10^5 \, \text{m}^{-1}.
\]
Convert to \( \lambda_1 \):
\[
\lambda_1 = \frac{1}{5.33 \times 10^5} \approx 18800 \, \text{Å}.
\]
Step 3: Calculate the short wavelength limit (\( n = \infty \)).
For \( n = \infty \), the formula becomes:
\[
\frac{1}{\lambda_{\text{min}}} = R \left( \frac{1}{3^2} \right).
\]
Substitute \( R = 1.097 \times 10^7 \, \text{m}^{-1} \):
\[
\frac{1}{\lambda_{\text{min}}} = 1.097 \times 10^7 \cdot \frac{1}{9}.
\]
Simplify:
\[
\frac{1}{\lambda_{\text{min}}} = \frac{1.097 \times 10^7}{9} \approx 1.22 \times 10^6 \, \text{m}^{-1}.
\]
Convert to \( \lambda_{\text{min}} \):
\[
\lambda_{\text{min}} = \frac{1}{1.22 \times 10^6} \approx 8.225 \times 10^{-7} \, \text{m}.
\]
Convert to angstroms:
\[
\lambda_{\text{min}} = 8225 \, \text{Å}.
\]
Thus, the short wavelength limit of the Paschen series is \( 8225 \, \text{Å} \).