\( \frac{1}{9} \)
The series limit corresponds to transitions to a fixed lower level from \( n = \infty \).
Energy of a photon emitted during a transition in hydrogen is: \[ E = 13.6 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)\text{ eV} \] For the **series limit**, \( n_2 \to \infty \), so: \[ E_{\text{limit}} = 13.6 \left( \frac{1}{n_1^2} \right) \]
- For **Lyman series**: \( n_1 = 1 \) \[ E_L = 13.6 \cdot \frac{1}{1^2} = 13.6\ \text{eV} \] - For **Paschen series**: \( n_1 = 3 \) \[ E_P = 13.6 \cdot \frac{1}{3^2} = 13.6 \cdot \frac{1}{9} = 1.51\ \text{eV} \]
Since \( E = \frac{hc}{\lambda} \), wavelength is inversely proportional to energy: \[ \lambda \propto \frac{1}{E} \] Therefore, the ratio of wavelengths is: \[ \frac{\lambda_L}{\lambda_P} = \frac{E_P}{E_L} = \frac{1.51}{13.6} = \frac{1}{9} \]
\(\boxed{\frac{1}{9}}\)