Given that momentum is conserved:
\[ |p_1| = |p_2| \]
Let \( p \) denote the magnitude of the momentum. The kinetic energy (KE) of an object is given by:
\[ KE = \frac{p^2}{2M} \]
Since the momenta of the artillery and the shell are equal, the kinetic energy is inversely proportional to the mass:
\[ KE \propto \frac{1}{M} \]
Thus, the ratio of kinetic energies of the artillery (\( KE_1 \)) and the shell (\( KE_2 \)) is:
\[ \frac{KE_1}{KE_2} = \frac{\frac{p^2}{2M_1}}{\frac{p^2}{2M_2}} = \frac{M_2}{M_1} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: