Given that momentum is conserved:
\[ |p_1| = |p_2| \]
Let \( p \) denote the magnitude of the momentum. The kinetic energy (KE) of an object is given by:
\[ KE = \frac{p^2}{2M} \]
Since the momenta of the artillery and the shell are equal, the kinetic energy is inversely proportional to the mass:
\[ KE \propto \frac{1}{M} \]
Thus, the ratio of kinetic energies of the artillery (\( KE_1 \)) and the shell (\( KE_2 \)) is:
\[ \frac{KE_1}{KE_2} = \frac{\frac{p^2}{2M_1}}{\frac{p^2}{2M_2}} = \frac{M_2}{M_1} \]
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: