An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))
Step-by-step Calculation:
\( \Delta Q_1 = m \times S_i \times \Delta T = 10^{-3} \times 2100 \times 10 = 21 \, \text{J} \)
\( \Delta Q_2 = m \times L_f = 10^{-3} \times 3.35 \times 10^5 = 335 \, \text{J} \)
\( \Delta Q_3 = m \times S_w \times \Delta T = 10^{-3} \times 4180 \times 100 = 418 \, \text{J} \)
\( \Delta Q_4 = m \times L_v = 10^{-3} \times 2.25 \times 10^6 = 2250 \, \text{J} \)
\( \Delta Q_5 = m \times S_s \times \Delta T = 10^{-3} \times 1920 \times 10 = 19.2 \, \text{J} \)
Total Heat Required:
\( Q = \Delta Q_1 + \Delta Q_2 + \Delta Q_3 + \Delta Q_4 + \Delta Q_5 \)
\( Q = 21 + 335 + 418 + 2250 + 19.2 = 3043.2 \, \text{J} \)
Correct Option: (2) 3043 J
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: