An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))
Step-by-step Calculation:
\( \Delta Q_1 = m \times S_i \times \Delta T = 10^{-3} \times 2100 \times 10 = 21 \, \text{J} \)
\( \Delta Q_2 = m \times L_f = 10^{-3} \times 3.35 \times 10^5 = 335 \, \text{J} \)
\( \Delta Q_3 = m \times S_w \times \Delta T = 10^{-3} \times 4180 \times 100 = 418 \, \text{J} \)
\( \Delta Q_4 = m \times L_v = 10^{-3} \times 2.25 \times 10^6 = 2250 \, \text{J} \)
\( \Delta Q_5 = m \times S_s \times \Delta T = 10^{-3} \times 1920 \times 10 = 19.2 \, \text{J} \)
Total Heat Required:
\( Q = \Delta Q_1 + \Delta Q_2 + \Delta Q_3 + \Delta Q_4 + \Delta Q_5 \)
\( Q = 21 + 335 + 418 + 2250 + 19.2 = 3043.2 \, \text{J} \)
Correct Option: (2) 3043 J
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
The least acidic compound, among the following is