An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))

Step-by-step Calculation:
\( \Delta Q_1 = m \times S_i \times \Delta T = 10^{-3} \times 2100 \times 10 = 21 \, \text{J} \)
\( \Delta Q_2 = m \times L_f = 10^{-3} \times 3.35 \times 10^5 = 335 \, \text{J} \)
\( \Delta Q_3 = m \times S_w \times \Delta T = 10^{-3} \times 4180 \times 100 = 418 \, \text{J} \)
\( \Delta Q_4 = m \times L_v = 10^{-3} \times 2.25 \times 10^6 = 2250 \, \text{J} \)
\( \Delta Q_5 = m \times S_s \times \Delta T = 10^{-3} \times 1920 \times 10 = 19.2 \, \text{J} \)
Total Heat Required:
\( Q = \Delta Q_1 + \Delta Q_2 + \Delta Q_3 + \Delta Q_4 + \Delta Q_5 \)
\( Q = 21 + 335 + 418 + 2250 + 19.2 = 3043.2 \, \text{J} \)
Correct Option: (2) 3043 J
Match List-I with List-II.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: