Match List-I with List-II.
To solve the given matching problem, we need to understand the thermodynamic processes and their corresponding equations.
Hence, the correct answer is (A)-(IV), (B)-(II), (C)-(III), (D)-(I).
The relations for heat exchange and work done during thermodynamic processes are:
- (A) Isobaric: In an isobaric process (constant pressure), the heat supplied to the system is equal to the work done by the system, i.e., \( \Delta Q = \Delta W \).
- (B) Isochoric: In an isochoric process (constant volume), the change in heat is equal to the change in internal energy, i.e., \( \Delta Q = \Delta U \).
- (C) Adiabatic: In an adiabatic process (no heat exchange), \( \Delta Q = 0 \).
- (D) Isothermal: In an isothermal process (constant temperature), the change in heat is equal to the change in internal energy plus the work done by the system, i.e., \( \Delta Q = \Delta U + P \Delta V \).
Thus, the correct answer is (3).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.