Let the resistance of the wire be $ R $.
Equilateral Triangle:
Each side has a resistance of $ \frac{R}{3} $.
If we consider two endpoints of one side of the triangle:
Since these two paths are in parallel:
$$ R_{\text{triangle}} = \frac{\left(\frac{R}{3}\right)\left(\frac{2R}{3}\right)}{\frac{R}{3} + \frac{2R}{3}} = \frac{\frac{2R^2}{9}}{R} = \frac{2R}{9} $$
Square:
Each side has a resistance of $ \frac{R}{4} $.
If we consider two endpoints of one side of the square:
Since these two paths are in parallel:
$$ R_{\text{square}} = \frac{\left(\frac{R}{4}\right)\left(\frac{3R}{4}\right)}{\frac{R}{4} + \frac{3R}{4}} = \frac{\frac{3R^2}{16}}{R} = \frac{3R}{16} $$
The ratio of the resistance of the triangle to that of the square is:
$$ \frac{R_{\text{triangle}}}{R_{\text{square}}} = \frac{\frac{2R}{9}}{\frac{3R}{16}} = \frac{2R}{9} \times \frac{16}{3R} = \frac{32}{27} $$
Final Answer:
The final answer is $ \frac{32}{27} $.
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: