Understanding the Problem
Solution
1. Relating \(A_y\) to the Vector's Magnitude (A):
Since the angle is with the y-axis, we use cosine:
\( A_y = A \cos(30^\circ) \)
Given \(A_y = 2\sqrt{3}\), we have:
\( 2\sqrt{3} = A \cos(30^\circ) \)
2. Solving for the Vector's Magnitude (A):
We know \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\).
Substituting:
\( 2\sqrt{3} = A \left( \frac{\sqrt{3}}{2} \right) \)
Solving for A:
\( A = \frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} = 4 \)
3. Finding the x-Component (\(A_x\)):
Since the angle is with the y-axis, the x-component uses sine:
\( A_x = A \sin(30^\circ) \)
We found \(A = 4\), and \(\sin(30^\circ) = \frac{1}{2}\).
Substituting:
\( A_x = 4 \left( \frac{1}{2} \right) = 2 \)
Final Answer
The magnitude of the x-component of the vector is 2.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.