Understanding the Problem
Solution
1. Relating \(A_y\) to the Vector's Magnitude (A):
Since the angle is with the y-axis, we use cosine:
\( A_y = A \cos(30^\circ) \)
Given \(A_y = 2\sqrt{3}\), we have:
\( 2\sqrt{3} = A \cos(30^\circ) \)
2. Solving for the Vector's Magnitude (A):
We know \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\).
Substituting:
\( 2\sqrt{3} = A \left( \frac{\sqrt{3}}{2} \right) \)
Solving for A:
\( A = \frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} = 4 \)
3. Finding the x-Component (\(A_x\)):
Since the angle is with the y-axis, the x-component uses sine:
\( A_x = A \sin(30^\circ) \)
We found \(A = 4\), and \(\sin(30^\circ) = \frac{1}{2}\).
Substituting:
\( A_x = 4 \left( \frac{1}{2} \right) = 2 \)
Final Answer
The magnitude of the x-component of the vector is 2.
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: