The magnitude of the magnetic field (\( |\vec{B}| \)) is related to the electric field magnitude (\( |\vec{E}| \)) by:
\[ |\vec{B}| = \frac{|\vec{E}|}{c}, \]
where \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light in free space. Substituting the given values:
\[ |\vec{B}| = \frac{6.6}{3 \times 10^8} = 2.2 \times 10^{-8} \, \text{T}. \]
In an electromagnetic wave, the electric field (\( \vec{E} \)), magnetic field (\( \vec{B} \)), and propagation direction (\( \vec{C} \)) are mutually perpendicular and follow the right-hand rule:
\[ \vec{E} \times \vec{B} = \vec{C}. \]
Combining the magnitude and direction, the magnetic field is:
\[ \vec{B} = (2.2 \times 10^{-8}) \, \hat{k} \, \text{T}. \]
\( \vec{B} = 2.2 \times 10^{-8} \, \hat{k} \, \text{T} \).
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.