The magnitude of the magnetic field (\( |\vec{B}| \)) is related to the electric field magnitude (\( |\vec{E}| \)) by:
\[ |\vec{B}| = \frac{|\vec{E}|}{c}, \]
where \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light in free space. Substituting the given values:
\[ |\vec{B}| = \frac{6.6}{3 \times 10^8} = 2.2 \times 10^{-8} \, \text{T}. \]
In an electromagnetic wave, the electric field (\( \vec{E} \)), magnetic field (\( \vec{B} \)), and propagation direction (\( \vec{C} \)) are mutually perpendicular and follow the right-hand rule:
\[ \vec{E} \times \vec{B} = \vec{C}. \]
Combining the magnitude and direction, the magnetic field is:
\[ \vec{B} = (2.2 \times 10^{-8}) \, \hat{k} \, \text{T}. \]
\( \vec{B} = 2.2 \times 10^{-8} \, \hat{k} \, \text{T} \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}