The magnitude of the magnetic field (\( |\vec{B}| \)) is related to the electric field magnitude (\( |\vec{E}| \)) by:
\[ |\vec{B}| = \frac{|\vec{E}|}{c}, \]
where \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light in free space. Substituting the given values:
\[ |\vec{B}| = \frac{6.6}{3 \times 10^8} = 2.2 \times 10^{-8} \, \text{T}. \]
In an electromagnetic wave, the electric field (\( \vec{E} \)), magnetic field (\( \vec{B} \)), and propagation direction (\( \vec{C} \)) are mutually perpendicular and follow the right-hand rule:
\[ \vec{E} \times \vec{B} = \vec{C}. \]
Combining the magnitude and direction, the magnetic field is:
\[ \vec{B} = (2.2 \times 10^{-8}) \, \hat{k} \, \text{T}. \]
\( \vec{B} = 2.2 \times 10^{-8} \, \hat{k} \, \text{T} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: