This problem involves electromagnetic fields, where we are given a magnetic field \( \mathbf{B} \) and need to calculate the electric field \( \mathbf{E} \) and other related quantities. Let's break it down step-by-step.
The magnetic field is given by: \[ \mathbf{B} = \left( \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left[ \omega \left( t - \frac{z}{c} \right) \right] \] where \( \hat{i} \) and \( \hat{j} \) are the unit vectors along the x-axis and y-axis, respectively, and \( \omega \) is the angular frequency, \( t \) is time, and \( z \) is the position.
The electric field \( \mathbf{E} \) is related to the magnetic field \( \mathbf{B} \) and the direction of wave propagation \( \mathbf{c} \) by the following equation: \[ \mathbf{E} = \mathbf{B} \times \mathbf{c}, \quad \mathbf{E} = B_0 c \] where \( B_0 \) is the magnitude of the magnetic field.
To find the electric field, we take the cross product of \( \mathbf{B} \) and \( \mathbf{c} \). We get: \[ \mathbf{E} = \left( \frac{\sqrt{3}}{2} \hat{i} - \hat{j} \right) + \frac{1}{2} \hat{i} \]
Now, we can evaluate \( E_0 \), the electric field at \( t = 0 \). We have: \[ E_0 = 30c \] This gives the value of the electric field at \( t = 0 \).
The electric field \( \mathbf{E} \) can be written as: \[ \mathbf{E} = \left( \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right) 30c \sin \left[ \omega \left( t - \frac{z}{c} \right) \right] \]
\[ \mathbf{E} = \left( \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right) 30c \sin \left[ \omega \left( t - \frac{z}{c} \right) \right] \]
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: