We know that the relationship between the magnetic field \( \vec{B} \) and the electric field \( \vec{E} \) in an electromagnetic wave is given by: \[ \vec{E} = \vec{B} \times \hat{c} \] Additionally, \( \vec{E} = B_0 c \), where \( c \) is the speed of light.
Step 2: Given Magnetic Field \( \vec{B} \)We are given the magnetic field as: \[ \vec{B} = \left( \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left( \omega \left( t - \frac{z}{c} \right) \right) \]
Step 3: Calculate the Electric Field \( \vec{E} \)To calculate \( \vec{E} \), we use the cross product and the fact that \( \vec{E} = B_0 c \). We get: \[ \vec{E} = \left( \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2}
List-I EM-Wave | List-II Wavelength Range |
---|---|
(A) Infra-red | (III) 1 mm to 700 nm |
(B) Ultraviolet | (II) 400 nm to 1 nm |
(C) X-rays | (IV) 1 nm to \(10^{-3}\) nm |
(D) Gamma rays | (I) \(<10^{-3}\) nm |
The steam volatile compounds among the following are: