According to the first law of thermodynamics,
\(Δ U = Δ Q -\frac {Δ Q}{4}\)
\(Δ U = \frac 34Δ Q\)
\(⇒ nC_vΔT = \frac 34nCΔT\)
\(⇒ C = \frac {4C_v}{3}\)
\(= 2R\)
So, the answer is \(2\).
Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |

| List-I | List-II | ||
| P | The value of \(I1\) in Ampere is | I | \(0\) |
| Q | The value of I2 in Ampere is | II | \(2\) |
| R | The value of \(\omega_0\) in kilo-radians/s is | III | \(4\) |
| S | The value of \(V_0\) in Volt is | IV | \(20\) |
| 200 | |||
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Specific heat of a solid or liquid is the amount of heat that raises the temperature of a unit mass of the solid through 1°C.
The Molar specific heat of a solid or liquid of a material is the heat that you provide to raise the temperature of one mole of solid or liquid through 1K or 1°C.
The volume of solid remains constant when heated through a small range of temperature. This is known as specific heat at a constant volume. It is denoted as CV.
The pressure of solid remains constant when heated through a small range of temperature. This is known as specific heat at constant pressure which can be denoted as CP.