According to the first law of thermodynamics,
\(Δ U = Δ Q -\frac {Δ Q}{4}\)
\(Δ U = \frac 34Δ Q\)
\(⇒ nC_vΔT = \frac 34nCΔT\)
\(⇒ C = \frac {4C_v}{3}\)
\(= 2R\)
So, the answer is \(2\).
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
Three identical rods are joined as shown in the figure. The left and right ends are kept at \( 0^\circ C \) and \( 90^\circ C \) as shown in the figure. The temperature \( \theta \) at the junction of the rods is:
List-I | List-II | ||
P | The value of \(I1\) in Ampere is | I | \(0\) |
Q | The value of I2 in Ampere is | II | \(2\) |
R | The value of \(\omega_0\) in kilo-radians/s is | III | \(4\) |
S | The value of \(V_0\) in Volt is | IV | \(20\) |
200 |
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
Specific heat of a solid or liquid is the amount of heat that raises the temperature of a unit mass of the solid through 1°C.
The Molar specific heat of a solid or liquid of a material is the heat that you provide to raise the temperature of one mole of solid or liquid through 1K or 1°C.
The volume of solid remains constant when heated through a small range of temperature. This is known as specific heat at a constant volume. It is denoted as CV.
The pressure of solid remains constant when heated through a small range of temperature. This is known as specific heat at constant pressure which can be denoted as CP.