Given ellipse is
\[
\frac{x^2}{36} + \frac{y^2}{25} = 1
\]
Any point on line \(AB\) can be assumed as
\[
Q(\sqrt{5} + r\cos\theta, \sqrt{5} + r\sin\theta)
\]
Substituting this into the equation of the ellipse:
\[
25(\sqrt{5} + r\cos\theta)^2 + 36(\sqrt{5} + r\sin\theta)^2 = 900
\]
Expanding and simplifying:
\[
r^2(25\cos^2\theta + 36\sin^2\theta) + 2\sqrt{5}r(25\cos\theta + 36\sin\theta) + 25 \cdot 5 + 36 \cdot 5 = 900
\]
\[
r^2(25\cos^2\theta + 36\sin^2\theta) + 2\sqrt{5}r(25\cos\theta + 36\sin\theta) = 900 - 305 = 595
\]
\[
\Rightarrow r^2(25\cos^2\theta + 36\sin^2\theta) + 2\sqrt{5}r(25\cos\theta + 36\sin\theta) - 595 = 0
\]
Let the roots of this quadratic in \(r\) be \(PA\) and \(PB\), then
\[
PA \cdot PB = \frac{595}{25\cos^2\theta + 36\sin^2\theta}
\]
To maximize \(PA \cdot PB\), the denominator should be minimized:
\[
25\cos^2\theta + 36\sin^2\theta = 25 + 11\sin^2\theta
\]
Maximum value of \(PA \cdot PB\) occurs when \(\sin^2\theta = 0\), i.e., \(\theta = 0\) or \(\pi\)
\[
\Rightarrow \text{Line } AB \text{ must be parallel to the x-axis} \Rightarrow y_A = y_B = \sqrt{5}
\]
Putting \(y = \sqrt{5}\) in the equation of the ellipse:
\[
\frac{x^2}{36} + \frac{5}{25} = 1 \Rightarrow \frac{x^2}{36} = \frac{4}{5} \Rightarrow x^2 = \frac{4}{5} \cdot 36 = \frac{144}{5}
\]
Hence, coordinates of \(A\) and \(B\) are:
\[
A = \left(-\frac{12}{\sqrt{5}}, \sqrt{5}\right), \quad B = \left(\frac{12}{\sqrt{5}}, \sqrt{5} \right)
\]
Now,
\[
PA^2 + PB^2 = \left(\sqrt{5} - \frac{12}{\sqrt{5}}\right)^2 + \left(\sqrt{5} + \frac{12}{\sqrt{5}}\right)^2
\]
\[
= 2\left(5 + \frac{144}{5} \right) = 2 \cdot \frac{169}{5} = \frac{338}{5}
\]
\[
\Rightarrow 5(PA^2 + PB^2) = 338
\]