The line passing through the origin and making equal angles with the positive coordinate axes is \( y = x \).
To find the coordinates of A, we solve \( 2x + y + 6 = 0 \) and \( y = x \): \( 2x + x + 6 = 0 \) \( 3x = -6 \) \( x = -2 \) \( y = -2 \) So, A is \( (-2, -2) \).
To find the coordinates of B, we solve \( 4x + 2y - p = 0 \) and \( y = x \): \( 4x + 2x - p = 0 \) \( 6x = p \) \( x = \frac{p}{6} \) \( y = \frac{p}{6} \)
So, B is \( \left( \frac{p}{6}, \frac{p}{6} \right) \).
Given \( AB = \frac{9}{\sqrt{2}} \), we have: \( \sqrt{ \left( \frac{p}{6} + 2 \right)^2 + \left( \frac{p}{6} + 2 \right)^2 } = \frac{9}{\sqrt{2}} \) \( \sqrt{ 2 \left( \frac{p}{6} + 2 \right)^2 } = \frac{9}{\sqrt{2}} \) \( \sqrt{2} \left| \frac{p}{6} + 2 \right| = \frac{9}{\sqrt{2}} \) \( \left| \frac{p}{6} + 2 \right| = \frac{9}{2} \)
Since \( p > 0 \), \( \frac{p}{6} + 2 = \frac{9}{2} \) \( \frac{p}{6} = \frac{9}{2} - 2 = \frac{5}{2} \) \( p = 15 \)
Therefore, B is \( \left( \frac{15}{6}, \frac{15}{6} \right) = \left( \frac{5}{2}, \frac{5}{2} \right) \).
The slope of \( L_2 \) is \( m_2 = -2 \). The slope of \( y = x \) is \( m_1 = 1 \).
Let \( \theta \) be the angle between the lines \( y = x \) and \( L_2 \). \( \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{1 - (-2)}{1 + 1(-2)} \right| = \left| \frac{3}{-1} \right| = 3 \) From the geometry, \( \tan \theta = \frac{AM}{BM} \).
Therefore, \( \frac{AM}{BM} = 3 \).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: