The line passing through the origin and making equal angles with the positive coordinate axes is \( y = x \).
To find the coordinates of A, we solve \( 2x + y + 6 = 0 \) and \( y = x \): \( 2x + x + 6 = 0 \) \( 3x = -6 \) \( x = -2 \) \( y = -2 \) So, A is \( (-2, -2) \).
To find the coordinates of B, we solve \( 4x + 2y - p = 0 \) and \( y = x \): \( 4x + 2x - p = 0 \) \( 6x = p \) \( x = \frac{p}{6} \) \( y = \frac{p}{6} \)
So, B is \( \left( \frac{p}{6}, \frac{p}{6} \right) \).
Given \( AB = \frac{9}{\sqrt{2}} \), we have: \( \sqrt{ \left( \frac{p}{6} + 2 \right)^2 + \left( \frac{p}{6} + 2 \right)^2 } = \frac{9}{\sqrt{2}} \) \( \sqrt{ 2 \left( \frac{p}{6} + 2 \right)^2 } = \frac{9}{\sqrt{2}} \) \( \sqrt{2} \left| \frac{p}{6} + 2 \right| = \frac{9}{\sqrt{2}} \) \( \left| \frac{p}{6} + 2 \right| = \frac{9}{2} \)
Since \( p > 0 \), \( \frac{p}{6} + 2 = \frac{9}{2} \) \( \frac{p}{6} = \frac{9}{2} - 2 = \frac{5}{2} \) \( p = 15 \)
Therefore, B is \( \left( \frac{15}{6}, \frac{15}{6} \right) = \left( \frac{5}{2}, \frac{5}{2} \right) \).
The slope of \( L_2 \) is \( m_2 = -2 \). The slope of \( y = x \) is \( m_1 = 1 \).
Let \( \theta \) be the angle between the lines \( y = x \) and \( L_2 \). \( \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{1 - (-2)}{1 + 1(-2)} \right| = \left| \frac{3}{-1} \right| = 3 \) From the geometry, \( \tan \theta = \frac{AM}{BM} \).
Therefore, \( \frac{AM}{BM} = 3 \).
Let \( F_1, F_2 \) \(\text{ be the foci of the hyperbola}\) \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, \, b > 0, \] and let \( O \) be the origin. Let \( M \) be an arbitrary point on curve \( C \) and above the X-axis and \( H \) be a point on \( MF_1 \) such that \( MF_2 \perp F_1 F_2, \, M F_1 \perp OH, \, |OH| = \lambda |O F_2| \) with \( \lambda \in (2/5, 3/5) \), then the range of the eccentricity \( e \) is in:
Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: