A cubical volume is bounded by the surfaces $x=0, x= a , y=0, y= a , z=0, z= a$ The electric field in the region is given by $\vec{E}=E_0 x \hat{ t }$ Where $E_0=4 \times 10^4 NC ^{-1} m ^{-1}$ If $a=2 cm$, the charge contained in the cubical volume is $Q \times 10^{-14} C$ The value of $Q$ is ___ Take \(E_{0}=9\times 10^{-2}C^{2}/Nm^{2}\)
The correct answer is 288.
LIST I | LIST II | ||
A | Gauss's Law in Electrostatics | I | \(\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_B}{d t}\) |
B | Faraday's Law | II | \(\oint \vec{B} \cdot d \vec{A}=0\) |
C | Gauss's Law in Magnetism | III | \(\oint \vec{B} \cdot d \vec{l}=\mu_0 i_c+\mu_0 \in_0 \frac{d \phi_E}{d t}\) |
D | Ampere-Maxwell Law | IV | \(\oint \vec{E} \cdot d \vec{s}=\frac{q}{\epsilon_0}\) |
It is the property of subatomic particles that experiences a force when put in an electric and magnetic field.
It is a property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by E, called electric field strength or electric field intensity.
Electric charges are of two types: Positive and Negative. It is commonly carried by charge carriers protons and electrons.
Various properties of charge include the following :-
Two kinds of electric charges are there :-
When there is an identical number of positive and negative charges, the negative and positive charges would cancel out each other and the object would become neutral.