1. **Using Gauss’s Law:**
When a charge \( q \) is placed at the center of one face of a cube, it can be visualized that the charge \( q \) contributes equally to two adjacent cubes.
2. **Flux Calculation:**
According to Gauss’s law, the total flux \( \Phi \) due to charge \( q \) in a closed surface is given by:
\[ \Phi_{\text{total}} = \frac{q}{\epsilon_0}. \] Since the charge \( q \) is shared equally between two adjacent cubes, the flux through each cube is:
\[ \Phi = \frac{q}{2\epsilon_0}. \]
Answer: \( \frac{q}{2\epsilon_0} \)

| LIST I | LIST II | ||
| A | Gauss's Law in Electrostatics | I | \(\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_B}{d t}\) |
| B | Faraday's Law | II | \(\oint \vec{B} \cdot d \vec{A}=0\) |
| C | Gauss's Law in Magnetism | III | \(\oint \vec{B} \cdot d \vec{l}=\mu_0 i_c+\mu_0 \in_0 \frac{d \phi_E}{d t}\) |
| D | Ampere-Maxwell Law | IV | \(\oint \vec{E} \cdot d \vec{s}=\frac{q}{\epsilon_0}\) |

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: