1. **Using Gauss’s Law:**
When a charge \( q \) is placed at the center of one face of a cube, it can be visualized that the charge \( q \) contributes equally to two adjacent cubes.
2. **Flux Calculation:**
According to Gauss’s law, the total flux \( \Phi \) due to charge \( q \) in a closed surface is given by:
\[ \Phi_{\text{total}} = \frac{q}{\epsilon_0}. \] Since the charge \( q \) is shared equally between two adjacent cubes, the flux through each cube is:
\[ \Phi = \frac{q}{2\epsilon_0}. \]
Answer: \( \frac{q}{2\epsilon_0} \)

| LIST I | LIST II | ||
| A | Gauss's Law in Electrostatics | I | \(\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_B}{d t}\) |
| B | Faraday's Law | II | \(\oint \vec{B} \cdot d \vec{A}=0\) |
| C | Gauss's Law in Magnetism | III | \(\oint \vec{B} \cdot d \vec{l}=\mu_0 i_c+\mu_0 \in_0 \frac{d \phi_E}{d t}\) |
| D | Ampere-Maxwell Law | IV | \(\oint \vec{E} \cdot d \vec{s}=\frac{q}{\epsilon_0}\) |

Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to