Step 1: Capacitor arrangement The given system consists of three capacitors connected in parallel, each having:
Area of overlap = \( \frac{A}{3} \).
The distances between the plates are \(d\), \(2d\), and \(3d\), respectively.
Step 2: Capacitance of each section The capacitance of a parallel plate capacitor is given by:
\[ C = \frac{\epsilon_0 A}{d}. \]
For the three sections:
1. \(C_1 = \frac{\epsilon_0 A}{3d} = \frac{\epsilon_0 A}{3d}\),
2. \(C_2 = \frac{\epsilon_0 A}{6d}\),
3. \(C_3 = \frac{\epsilon_0 A}{9d}\).
Step 3: Total capacitance Since the capacitors are in parallel, the equivalent capacitance is:
\[ C_{\text{eq}} = C_1 + C_2 + C_3. \]
Substitute the values:
\[ C_{\text{eq}} = \frac{\epsilon_0 A}{3d} + \frac{\epsilon_0 A}{6d} + \frac{\epsilon_0 A}{9d}. \]
Take the common denominator:
\[ C_{\text{eq}} = \frac{\epsilon_0 A}{d} \left( \frac{1}{3} + \frac{1}{6} + \frac{1}{9} \right). \]
Simplify the fraction:
\[ \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{6 + 3 + 2}{18} = \frac{11}{18}. \]
Thus:
\[ C_{\text{eq}} = \frac{\epsilon_0 A}{d} \cdot \frac{11}{18}. \]
Final Answer: \( C_{\text{eq}} = \frac{11 \epsilon_0 A}{18d}. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: