To solve this problem, we need to understand how the capacitance of a parallel plate capacitor can be increased. The capacitance \( C \) is given by the formula:v
\(C = \frac{{\varepsilon_0 \cdot A}}{{d}}\)
where:
Initially, the values given are:
The area \( A \) is:
\(A = l \times b = 3 \times 10^{-2} \times 1 \times 10^{-2} = 3 \times 10^{-4} \, \text{m}^2\)
Therefore, the initial capacitance \( C_{\text{initial}} \) is:
\(C_{\text{initial}} = \frac{{\varepsilon_0 \cdot 3 \times 10^{-4}}}{{3 \times 10^{-6}}} = \varepsilon_0 \times 100 \, \text{F}\)
To increase the capacitance by a factor of 10, the new capacitance \( C_{\text{new}} \) should be:
\(C_{\text{new}} = 10 \times C_{\text{initial}} = 10 \times \varepsilon_0 \times 100 = \varepsilon_0 \times 1000 \, \text{F}\)
We need to identify which options achieve this new capacitance by either increasing the plate area or reducing the distance between the plates:
Thus, the correct choices are C and E only.
Given:
- \( A \) is the plate area. - \( d \) is the distance between the plates. - The initial capacitance \( C \) is given by: \[ C = \frac{A \epsilon_0}{d}, \] where \( \epsilon_0 \) is the permittivity of free space.
The initial capacitance is given by the equation: \[ C = \frac{\epsilon_0 A}{d}. \] According to the problem, when \( b = 5 \, \text{cm} \) and \( d = 3 \, \text{cm} \), the capacitance is: \[ C = 10 \epsilon_0 \, \text{units}. \]
In Option 'E', we have: - \( b = 2 \, \text{cm} \), - \( d = 1 \, \text{cm} \). Substituting these values into the capacitance formula: \[ C = \frac{\epsilon_0 A}{d} = 10 \epsilon_0 \, \text{units}. \]
The capacitance is given by \( C = 10 \epsilon_0 \, \text{units} \) for both cases.

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
