Given:
- \( A \) is the plate area. - \( d \) is the distance between the plates. - The initial capacitance \( C \) is given by: \[ C = \frac{A \epsilon_0}{d}, \] where \( \epsilon_0 \) is the permittivity of free space.
The initial capacitance is given by the equation: \[ C = \frac{\epsilon_0 A}{d}. \] According to the problem, when \( b = 5 \, \text{cm} \) and \( d = 3 \, \text{cm} \), the capacitance is: \[ C = 10 \epsilon_0 \, \text{units}. \]
In Option 'E', we have: - \( b = 2 \, \text{cm} \), - \( d = 1 \, \text{cm} \). Substituting these values into the capacitance formula: \[ C = \frac{\epsilon_0 A}{d} = 10 \epsilon_0 \, \text{units}. \]
The capacitance is given by \( C = 10 \epsilon_0 \, \text{units} \) for both cases.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: