Given:
- \( A \) is the plate area. - \( d \) is the distance between the plates. - The initial capacitance \( C \) is given by: \[ C = \frac{A \epsilon_0}{d}, \] where \( \epsilon_0 \) is the permittivity of free space.
The initial capacitance is given by the equation: \[ C = \frac{\epsilon_0 A}{d}. \] According to the problem, when \( b = 5 \, \text{cm} \) and \( d = 3 \, \text{cm} \), the capacitance is: \[ C = 10 \epsilon_0 \, \text{units}. \]
In Option 'E', we have: - \( b = 2 \, \text{cm} \), - \( d = 1 \, \text{cm} \). Substituting these values into the capacitance formula: \[ C = \frac{\epsilon_0 A}{d} = 10 \epsilon_0 \, \text{units}. \]
The capacitance is given by \( C = 10 \epsilon_0 \, \text{units} \) for both cases.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: