The potential energy stored in a parallel plate capacitor is given by the formula: \[ U = \frac{1}{2} C V^2, \] where \( C \) is the capacitance of the capacitor and \( V \) is the potential difference across the plates.
The capacitance \( C \) of a parallel plate capacitor is given by: \[ C = \frac{\epsilon_0 A}{d}, \] where \( A \) is the area of each plate, \( \epsilon_0 \) is the permittivity of free space, and \( d \) is the separation between the plates.
The potential difference \( V \) across the plates is related to the electric field \( E \) by: \[ V = E d, \] where \( E \) is the electric field. Now substitute these into the formula for potential energy: \[ U = \frac{1}{2} \left( \frac{\epsilon_0 A}{d} \right) (E d)^2. \] Simplifying: \[ U = \frac{1}{2} \epsilon_0 E^2 A d. \] Thus, the potential energy stored in the capacitor is: \[ \boxed{\frac{1}{2} \epsilon_0 E^2 A d}. \]
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .