The potential energy stored in a parallel plate capacitor is given by the formula: \[ U = \frac{1}{2} C V^2, \] where \( C \) is the capacitance of the capacitor and \( V \) is the potential difference across the plates.
The capacitance \( C \) of a parallel plate capacitor is given by: \[ C = \frac{\epsilon_0 A}{d}, \] where \( A \) is the area of each plate, \( \epsilon_0 \) is the permittivity of free space, and \( d \) is the separation between the plates.
The potential difference \( V \) across the plates is related to the electric field \( E \) by: \[ V = E d, \] where \( E \) is the electric field. Now substitute these into the formula for potential energy: \[ U = \frac{1}{2} \left( \frac{\epsilon_0 A}{d} \right) (E d)^2. \] Simplifying: \[ U = \frac{1}{2} \epsilon_0 E^2 A d. \] Thus, the potential energy stored in the capacitor is: \[ \boxed{\frac{1}{2} \epsilon_0 E^2 A d}. \]
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: