We can use the formula for the heat absorbed by the gas:
\[
Q = n C_V \Delta T
\]
Where:
- \( Q = 500 \, {J} \) (heat transferred),
- \( n = 0.5 \, {mol} \),
- \( C_V = 3R/2 \) (molar heat capacity for a monoatomic gas, where \( R = 8.3 \, {J/mol·K} \)).
First, calculate \( C_V \):
\[
C_V = \frac{3}{2} \times 8.3 = 12.45 \, {J/mol·K}
\]
Now, solve for the temperature change \( \Delta T \):
\[
500 = 0.5 \times 12.45 \times \Delta T
\]
\[
\Delta T = \frac{500}{0.5 \times 12.45} = 80 \, {K}
\]
The final temperature:
\[
T_f = 298 \, {K} + 80 \, {K} = 378 \, {K}
\]
The change in internal energy is \( \Delta U = 300 \, {J} \).
Thus, the correct answer is (3) 378 K and 300 J.