Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is ____. Use: Universal gas constant $ R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1} $; Atomic mass (in amu): H = 1, O = 16
Step 1: Write the balanced equation for electrolysis of water \[{2H_2O(l) -> 2H_2(g) + O_2(g)} \] Step 2: Moles of water \[ \text{Molar mass of } {H_2O} = 18 \, \text{g/mol}, \quad \text{Given mass} = 144 \, \text{g} \Rightarrow \frac{144}{18} = 8 \, \text{mol} \] Step 3: Moles of gaseous products \[ \text{From 2 mol } {H_2O} \Rightarrow 2 mol {H_2} + 1 mol {O_2} = 3 mol gas \Rightarrow 8 mol {H_2O} \Rightarrow 12 mol gas (\Delta n = 12) \] Step 4: Expansion work done \[ w = - \Delta n_{\text{gas}} R T = - 12 \times 8.3 \times 300 = -29880 \, \text{J} = \frac{-29880}{1000} = \boxed{29.88 \, \text{kJ}} \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is