Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is ____. Use: Universal gas constant $ R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1} $; Atomic mass (in amu): H = 1, O = 16
Step 1: Write the balanced equation for electrolysis of water \[{2H_2O(l) -> 2H_2(g) + O_2(g)} \] Step 2: Moles of water \[ \text{Molar mass of } {H_2O} = 18 \, \text{g/mol}, \quad \text{Given mass} = 144 \, \text{g} \Rightarrow \frac{144}{18} = 8 \, \text{mol} \] Step 3: Moles of gaseous products \[ \text{From 2 mol } {H_2O} \Rightarrow 2 mol {H_2} + 1 mol {O_2} = 3 mol gas \Rightarrow 8 mol {H_2O} \Rightarrow 12 mol gas (\Delta n = 12) \] Step 4: Expansion work done \[ w = - \Delta n_{\text{gas}} R T = - 12 \times 8.3 \times 300 = -29880 \, \text{J} = \frac{-29880}{1000} = \boxed{29.88 \, \text{kJ}} \]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?