An ideal monatomic gas of $ n $ moles is taken through a cycle $ WXYZW $ consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic $ V-T $ diagram. The volume of the gas at $ W, X $ and $ Y $ points are, $ 64 \, \text{cm}^3 $, $ 125 \, \text{cm}^3 $ and $ 250 \, \text{cm}^3 $, respectively. If the absolute temperature of the gas $ T_W $ at the point $ W $ is such that $ n R T_W = 1 \, J $ ($ R $ is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path $ XY $ is
Two identical plates $ P $ and $ Q $, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures $ T_P $ and $ T_Q $, respectively, with $ T_Q<T_P $, as shown in Fig. 1. The radiated power transferred per unit area from $ P $ to $ Q $ is $ W_0 $. Subsequently, two more plates, identical to $ P $ and $ Q $, are introduced between $ P $ and $ Q $, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from $ P $ to $ Q $ (Fig. 2) in the steady state is $ W_S $, then the ratio $ \dfrac{W_0}{W_S} $ is ____.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is ____. Use: Universal gas constant $ R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1} $; Atomic mass (in amu): H = 1, O = 16
A solid glass sphere of refractive index $ n = \sqrt{3} $ and radius $ R $ contains a spherical air cavity of radius $ \dfrac{R}{2} $, as shown in the figure. A very thin glass layer is present at the point $ O $ so that the air cavity (refractive index $ n = 1 $) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source $ S $ emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point $ O $ and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is $ \theta $. The value of $ \sin \theta $ is ____
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity):
In a scattering experiment, a particle of mass $ 2m $ collides with another particle of mass $ m $, which is initially at rest. Assuming the collision to be perfectly elastic, the maximum angular deviation $ \theta $ of the heavier particle, as shown in the figure, in radians is:
A conducting square loop initially lies in the $ XZ $ plane with its lower edge hinged along the $ X $-axis. Only in the region $ y \geq 0 $, there is a time dependent magnetic field pointing along the $ Z $-direction, $ \vec{B}(t) = B_0 (\cos \omega t) \hat{k} $, where $ B_0 $ is a constant. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts rotating with constant angular speed $ \omega $ about the $ X $ axis in the clockwise direction as viewed from the $ +X $ axis (as shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. ($ V $) in the loop as a function of time:
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is: